12 research outputs found

    Spirometric phenotypes from early childhood to young adulthood : a Chronic Airway Disease Early Stratification study

    Get PDF
    Acknowledgements Cohort-specific acknowledgements are presented in the supplementary material. We also acknowledge collaboration with the EXPANSE consortium (funded by the EU H2020 programme, grant number 874627). We thank Elise Heuvelin, European Respiratory Society, Lausanne, Switzerland, for her assistance on the current project.Peer reviewedPublisher PD

    Ku-Band penetration obtained from airborne radar and laser altimetry and TerraSAR-X in a blue ice area in Antarctica

    No full text
    Within ESA’s CryoSat-2 calibration and validation program (CryoVEx) an airborne campaign was carried out in the blue ice area in the vicinity of Schirmacher oasis, Dronning Maud Land, Antarctica in 2008. POLAR 5, the Alfred-Wegener-Institute’s research aircraft, carried the ESA airborne Ku-band SAR interferometric radar altimeter (ASIRAS) and a laser scanner during the CryoVEx campaign. In the blue ice area, partly covered with snow patches, a dense grid of 30 km x 40 km with a line spacing of 1 km was measured. Here, we present results of the comparisons of the final SAR processed ASIRAS elevations with the laser scanner elevation model. We will show the influence of snow patches on and the accuracy of the ASIRAS derived surface elevations by using the laser scanner DEM as reference. Furthermore, the derived Ku-band penetration depths and the thickness of the snow patches, derived from the ASIRAS data, are compared with the radar backscatter of a TerraSAR-X scene, acquired at the same time when the campaign took place. Our results show that Ku-band radar penetrates through the snow, while the snow patches do not affect the derived ASIRAS surface elevations. In contrast the radar backscatter of TerraSAR-X shows a strong correlation of the thickness of the snow patches. The results of this study highlight the need of careful waveform processing/re-tracking and though will contribute to improved CryoSat-2 elevation products

    Glacier thickness estimations of alpine glaciers using data and modeling constraints

    No full text
    Advanced knowledge of the ice thickness distribution within glaciers is of fundamental importance for several purposes, such as water resource management and the study of the impact of climate change. Ice thicknesses can be modeled using ice surface features, but the resulting models can be prone to considerable uncertainties. Alternatively, it is possible to measure ice thicknesses, for example, with ground-penetrating radar (GPR). Such measurements are typically restricted to a few profiles, with which it is not possible to obtain spatially unaliased subsurface images. We developed the Glacier Thickness Estimation algorithm (GlaTE), which optimally combines modeling results and measured ice thicknesses in an inversion procedure to obtain overall thickness distributions. GlaTE offers the flexibility of being able to add any existing modeling algorithm, and any further constraints can be added in a straightforward manner. Furthermore, it accounts for the uncertainties associated with the individual constraints. Properties and benefits of GlaTE are demonstrated with three case studies performed on different types of alpine glaciers. In all three cases, subsurface models could be found that are consistent with glaciological modeling and GPR data constraints. Since acquiring GPR data on glaciers can be an expensive endeavor, we additionally employed elements of sequential optimized experimental design (SOED) for determining cost-optimized GPR survey layouts. The calculated cost–benefit curves indicate that a relatively large amount of data can be acquired before redundant information is collected with any additional profiles, and it becomes increasingly expensive to obtain further information.ISSN:1994-0416ISSN:1994-042

    Glacier bed surveying with helicopter-borne dual-polarization ground-penetrating radar

    No full text
    Traditionally, helicopter-borne ground-penetrating radar (GPR) systems are operated with a single pair of bistatic dipole antennas to measure the thickness of glaciers. We demonstrate numerically that the directivity of the radiation pattern of single airborne dipoles do not correspond to an ideal full-space solution if the antennas are employed at typical flight heights. These directionality effects can degrade the quality of the subsurface images significantly, when the GPR antennas are orientated unfavorably. Since an adjustment of the antenna orientation is impractical during flight, we have developed a novel dual-polarization helicopter-borne GPR system consisting of two orthogonal pairs of commercial antennas in broadside configuration. To overcome the image quality deficits of the individual channels, we apply a pseudo-scalar approach in which we combine the data of both polarizations. Results of helicopter-borne GPR surveys on two alpine glaciers in Switzerland reveal more coherent bedrock reflections in the summed data compared with single dipole pair profiles. Generally, the dual-polarization setup is more suitable than a single antenna systems, because it is more versatile and less prone to directional effects caused by the placement of the dipole antennas in relation to undulating subsurface reflectors.ISSN:0022-1430ISSN:1727-565

    Ice thickness distribution of all Swiss glaciers based on extended ground-penetrating radar data and glaciological modeling

    Full text link
    Accurate knowledge of the ice thickness distribution and glacier bed topography is essential for predicting dynamic glacier changes and the future developments of downstream hydrology, which are impacting the energy sector, tourism industry and natural hazard management. Using AIR-ETH, a new helicopter-borne ground-penetrating radar (GPR) platform, we measured the ice thickness of all large and most medium-sized glaciers in the Swiss Alps during the years 2016–20. Most of these had either never or only partially been surveyed before. With this new dataset, 251 glaciers – making up 81% of the glacierized area – are now covered by GPR surveys. For obtaining a comprehensive estimate of the overall glacier ice volume, ice thickness distribution and glacier bed topography, we combined this large amount of data with two independent modeling algorithms. This resulted in new maps of the glacier bed topography with unprecedented accuracy. The total glacier volume in the Swiss Alps was determined to be 58.7 ± 2.5 km3^{3} in the year 2016. By projecting these results based on mass-balance data, we estimated a total ice volume of 52.9 ± 2.7 km3^{3} for the year 2020. Data and modeling results are accessible in the form of the SwissGlacierThickness-R2020 data package

    Ice thickness distribution of all Swiss glaciers based on extended ground-penetrating radar data and glaciological modeling

    No full text
    Accurate knowledge of the ice thickness distribution and glacier bed topography is essential for predicting dynamic glacier changes and the future developments of downstream hydrology, which are impacting the energy sector, tourism industry and natural hazard management. Using AIR-ETH, a new helicopter-borne ground-penetrating radar (GPR) platform, we measured the ice thickness of all large and most medium-sized glaciers in the Swiss Alps during the years 2016–20. Most of these had either never or only partially been surveyed before. With this new dataset, 251 glaciers – making up 81% of the glacierized area – are now covered by GPR surveys. For obtaining a comprehensive estimate of the overall glacier ice volume, ice thickness distribution and glacier bed topography, we combined this large amount of data with two independent modeling algorithms. This resulted in new maps of the glacier bed topography with unprecedented accuracy. The total glacier volume in the Swiss Alps was determined to be 58.7 ± 2.5 km3 in the year 2016. By projecting these results based on mass-balance data, we estimated a total ice volume of 52.9 ± 2.7 km3 for the year 2020. Data and modeling results are accessible in the form of the SwissGlacierThickness-R2020 data package.ISSN:0022-1430ISSN:1727-565

    Spirometric phenotypes from early childhood to young adulthood: a Chronic Airway Disease Early Stratification study

    No full text
    Background The prevalences of obstructive and restrictive spirometric phenotypes, and their relation to early-life risk factors from childhood to young adulthood remain poorly understood. The aim was to explore these phenotypes and associations with well-known respiratory risk factors across ages and populations in European cohorts. Methods We studied 49334 participants from 14 population-based cohorts in different age groups (â©œ10, >10–15, >15–20, >20–25 years, and overall, 5–25 years). The obstructive phenotype was defined as forced expiratory volume in 1 s (FEV1)/forced vital capacity (FVC) z-score less than the lower limit of normal (LLN), whereas the restrictive phenotype was defined as FEV1/FVC z-score â©ŸLLN, and FVC z-score <LLN. Results The prevalence of obstructive and restrictive phenotypes varied from 3.2–10.9% and 1.8–7.7%, respectively, without clear age trends. A diagnosis of asthma (adjusted odds ratio (aOR=2.55, 95% CI 2.14–3.04), preterm birth (aOR=1.84, 1.27–2.66), maternal smoking during pregnancy (aOR=1.16, 95% CI 1.01–1.35) and family history of asthma (aOR=1.44, 95% CI 1.25–1.66) were associated with a higher prevalence of obstructive, but not restrictive, phenotype across ages (5–25 years). A higher current body mass index (BMI was more often observed in those with the obstructive phenotype but less in those with the restrictive phenotype (aOR=1.05, 95% CI 1.03–1.06 and aOR=0.81, 95% CI 0.78–0.85, per kg·m−2 increase in BMI, respectively). Current smoking was associated with the obstructive phenotype in participants older than 10 years (aOR=1.24, 95% CI 1.05–1.46). Conclusion Obstructive and restrictive phenotypes were found to be relatively prevalent during childhood, which supports the early origins concept. Several well-known respiratory risk factors were associated with the obstructive phenotype, whereas only low BMI was associated with the restrictive phenotype, suggesting different underlying pathobiology of these two phenotypes
    corecore